ELECTRON-IMPACT MASS SPECTROMETRY OF METHYL O-METHYL-GLUCOPYRANOSIDURONAMIDES*†

VINCENT MIHÁLOV, VLADIMÍR KOVÁČIK, AND PAVOL KOVÁČ

Institute of Chemistry, Slovak Academy of Sciences, 809 33 Bratislava (Czechoslovakia)
(Received April 26th, 1978; accepted for publication in revised form, July 3rd, 1978)

ABSTRACT

Mass-spectral fragmentation of the complete series of methyl O-methyl- α -D-glucopyranosiduronamides has been studied. Based on 70- and 12-eV spectra, deuteration (OD and ND₂) experiments, and metastable-transition and exact-mass measurements, new cleavage-reactions resulting from the simultaneous presence of hydroxyl and amido groups in the molecule have been found. The mass spectra provide information useful in the determination of number and locations of methyl groups in methyl O-methylhexopyranosiduronamides.

INTRODUCTION

Systematic study of uronic acid derivatives by mass spectrometry has shown that the fragmentation² of methyl (methyl 2,3,4-tri-O-methyl-α-D-glucopyranosid)uronate does not differ qualitatively from that³⁻⁶ of permethylated methylhexopyranosides. On the other hand, quantitative differences, attributed to the presence of the electron-withdrawing methoxycarbonyl group, were evident. The presence of hydroxyl groups in methyl (methyl O-methylhexopyranosid)uronates drastically alters the mode of fragmentation^{7,8} of these compounds, giving rise to new fragmentation-series not observed for the fully methylated compounds. Fragmentation⁹ of methyl 2,3,4-tri-O-methyl-α-D-glucopyranosiduronamide has also been found to proceed through a different, overall fragmentation-scheme. In the series of glycuronamides 1-8, both hydroxyl and amido groups are present. Evaluation of the effect of interactions between these two types of functional group upon the mass-spectral fragmentation of the pyranoid ring, and clarification of the fragmentation of this series of derivatives was the theoretical aim of the present work. Glycuronamides are readily obtainable compounds often used in the identification of partially methylated uronic acid derivatives¹⁰. To find means whereby mass spectrometry could be used in the identification of this class of substances was the analytical purpose of the work described herein.

^{*}Dedicated to Professor Roy L. Whistler.

Part XIV of the series: Mass Spectrometry of Uronic Acid Derivatives: for Part XIII, see ref. 1.

		R ₂	R ³	R ⁴
CONU	1	н	н	н
CONH ₂	2	Me	н	н
<u></u> 0	3	н	Me	Н
OR ³	4	н	н	Me
R ⁴ O OMe	5	Me	Me	н
OR ²	6	Me	Н	Me
1-8	7	н	Me	Me
	8	Me	Me	Me

RESULTS AND DISCUSSION

The mass spectra of 1-8 obtained at 12 eV, simpler to some extent than those measured at 70 eV, are shown in Table I. Only a few of the compounds in this study produced weak molecular ions (appearing in the spectra at m/e 207, 221, and 235, according to the number of methyl groups present). Of the decompositions common in the fragmentation of permethylated hexopyranosides³⁻⁶ and hexuronic acids², only fissions following Series A, F, H, and J (Table II) occur. Serial eliminations of methanol, observed⁹ in the fragmentation of methyl 2,3,4-tri-O-methyl- α -D-glucopyranosiduronamide, compete with eliminations of water. The $[M - ROH]^+$ ions thus produced decompose by further elimination of water or methanol to afford the ions $[M - 2ROH]^+$. The previously observed⁹ elimination of methyl formate from the $[M - ROH]^+$ ions also occurs. These characteristic features were confirmed by analyzing the spectra of O- and N-deuterated analogues and by measurement of metastable transitions. The absence of ion peaks of the pyranoid E_1 series confirms that the C-5-CO₂OMe or the C-5-CH₂OMe bond.

O- And N-deuteration of the 2,4-di-O-methyl derivative 6 showed that the hydrogen atom of the amido group also participates in the elimination of water from the molecular ions (Scheme 1).

As may be seen for methyl O-methylhexopyranosides¹¹ and the corresponding methyl glycuronates⁷ bearing a free hydroxyl group at C-2 or C-4, cations having the elemental compositions $C_7H_{13}O_4$, $C_6H_{11}O_4$, and $C_5H_9O_4$ (m/e 161, 147, and 133, shifting to m/e 161, 148, and 135, respectively after deuteration) are formed from the amides 1–5 and 7 (Table II). Metastable-transition measurements proved that, in cases where these ions are formed from the HO-4 compounds 1–3 and 5, their decomposition is accompanied by liberation of carbon monoxide to give ions appearing at m/e 133, 119, and 105, respectively (Scheme 2). The ease of liberation of carbon monoxide from the ions of m/e 161, 147, and 133 formed from 1–3 and 5 supports the previous assumption¹¹ that these ions possess a 5-membered ring structure of the E_1 type (Scheme 2). On the other hand, fragmentation of compounds 4 and 7 is not accompanied by the elimination of carbon monoxide and, hence, the peaks at m/e 147 and 161 represent ions, formed after a transfer of a hydrogen atom

m/e	$\%$ Σ_{45}	$\% \Sigma_{45} imes 100$								
		2 ^b	3	4	2,3	2,4	3,4	2,3,4		
235					35	16	31			
222			11							
221			29							
218								25		
217						48	25	116		
207	36									
205					30		37			
204					64	48	48			
203		51			123	136	75			
202							35			
191			26	27		32	33			
190		56	50	119						
189	12	102	38	41						
188				68						
186						160	37	150		
185							62	66		
176	58			61						
175	40									
174	•-						50			
173							37			
172		127	23	41	227		149			
171		130	14	146	94		1.7			
161		45		1 10	617	-	109			
160	54	73		87	017	64	56			
159	٠.		65	132		56	188			
158	153		131	132		48	100			
157	102		83			155		258		
149	43		25		324	133	62	230		
148	43		47	251	324		02			
147		66	688	54						
146		38	God	J4						
145	36	38	41	114						
144	30	40	41	114	58	37	67			
		112		96	74					
143 141		112		90	74	53	251 37			
133	1529				1006		37			
131	95 51	15	122	06	32		020			
130	51 05	45 103	133	96 105	58	50	839			
129	95	102	83	105	94	50	79			
128			•	36		4				
127		45	23	70	42	176	113	, .		
126		38		178	32	42	161	342		
125		35								
119		357	1376	000						
118		10	98	320	44					
117	139	1351	1645	274	1461	53	377			
116	183	91	568	93			62			

TABLE I (continued)

$\%$ Σ_{45} $ imes$ 100								
2,3,	3,4	2,4	2,3	4	3	2.5		
	138			174	179	56	161	115.
	67	56	48	68		96		114
	100			595	44			113
	75	48	103	119	41	122	124	112
							549	105
					101	408	806	104
			56		65	196	513	103
300	1259	2364	123	2060	65	102	-	102
6265	671	3832	9.12	137	822		58	101
	62		42.2	146	59		80	100
	46	64	584	73			•	99
	62	58		82				98
	33	55		36				97
	33	64		132				96
	23	0.		102		53		95
	251	152	292	70	239			89
1253	293	482	747	128	329	1581	113	88
	251	91	211	1328	688	2091	1063	87
				54	269		190	86
	608	235	110	251	269	122	168	85
						53		83
1002	1931	268	1624	870	658	1071	2126	75
	503	509	51	824	359	612	315	74
217	• • • • • • • • • • • • • • • • • • • •	321	105		26	224	296	73
	251	117		201				72
	52		48		113	86	296	71
	37		29		44			69
	29		27		26			68
	37	26		45	32	40	95	61
	35	37	32	50	23	76	139	60
	33	26		41	55	40	95	59
	37	20		43	44	35	,,	58
	٠,			73	41	55		57
	54	58	84	50	179	51	172	45

[&]quot;12 eV. bThe numbers refer to the positions of the methyl groups.

m/e 235 (238)

 $M - H_2O$, m/e 217 (218)

Scheme 1

TABLE II FEATURES CHARACTERISTIC OF THE FRAGMENTATION OF METHYL O-METHYL- α -D-GLUCOPYRANOSIDURON-AMIDES 1–8

Ions	m/e	$\% \Sigma_{45}^{\alpha}$							
			2 ^b	3	4	2,3	2,4	3,4	2,3,4
A ₁	218								
	204								
	190								
	176								
A_2	186						• • •		
	172			•					
	158			• • •					
M - ROH	217								
	203						• • •		
	189								
	175								
M - 2ROH	185								•
	171								
	157								
M - ROH - HCO ₂ Me	157							•	
	143								
	129								
C7H13O4	161					xx		x	
C ₆ H ₁₁ O ₄	147			x					
C5H9O4	133	хX							
C ₅ H ₁₁ NO ₄	149								
C ₆ H ₁₃ O ₃	133					XX			
C ₅ H ₁₁ O ₃	119			xx					
$C_4H_9O_3$	105	XX							
C5H9O3	117		xx	xx		xx	•		
C4H7O3	103	x							
C ₃ H ₆ NO ₃	104	x							
C ₄ H ₈ NO ₂	102				XXX	• • •	xxx	xx	
F ₁	101			х		x	xxx	х	XXX
_	87	xx	xxx	x	xx				
H ₁	88		xx	• • •		x	• • •		xx
	74		x	• • •	x		• • •		
•	60								
$J_1 + C_2H_5NO_2$	75	xxx	xx	x	x	xx		XX	x

^aPeak intensities: ., < 0.5%; .., 0.5-1.0%; .., 1-5%; x, 5-10%; xx, 10-20%; xxx, > 20%. ^bThe numbers refer to the position of the methyl groups.

from the hydroxyl group on C-2, having acyclic and not furanoid structures. The ions $[C_5H_{11}NO_4]^{\frac{1}{2}}$, appearing at m/e 149 (151), are analogous to the $[C_6H_{12}O_5]^{\frac{1}{2}}$ ions formed⁷ from methyl(methyl O-methylhexopyranosid)uronates bearing a free hydroxyl group at C-4. The formation of $C_5H_9O_3]^+$ and $[C_4H_7O_3]^+$ ions appearing at m/e 117 and 103, characteristic of the fragmentation of methyl (methyl O-methylhexopyranosid)uronates⁷, also occurs for the emides. Exact-mass measurements of

H OME
$$OR^2$$
 OR^2 OR^2 OR^2 OR^2 OR^2 OR^2 OR^2 OR^2 OR^2

$$R^{2}$$
 R^{3} Me, Me m/e 161 (161) $C_{6}H_{13}O_{3}$ m/e 133 (133) H . Me m/e 147 (148) $C_{5}H_{11}O_{3}$ m/e 119 (120) $C_{4}H_{7}O_{3}$ m/e 105 (107)

Scheme 2

the ions having m/e 117 formed from the 2,3-dimethyl ether 5 showed that this peak signaling their formation is a doublet consisting of $[C_5H_9O_3]^+$ and $[C_4H_7NO_3]^+$ ions in the ratio of 3:2. This conclusion was confirmed by deuteration, which caused a partial shift of the peak at m/e 117 to m/e 119. The ions $[C_4H_7NO_3]^+$ are analogous to the ions $[C_5H_8O_4]^+$ having m/e 132 formed in the fragmentation of methyl (methyl 2,3-di-O-methyl- α -D-glucopyranosid)uronate⁷.

$$O_{A}H_{B}NO_{2}$$
 m/e 102 (105) $O_{3}H_{B}NO_{3}$ m/e 104 (108)

Electron-impact on compounds 4, 6, and 7, which bear a methoxyl group at C-4, results in the formation of an intense $[C_4H_8NO_2]^+$ ion appearing at m/e 102 (m/e 105 after deuteration). These ions are formed by transfer of a hydrogen atom from HO-2 or HO-3 to the carbonyl group, followed by conjugated transfer of electrons along the 6-membered ring. The ions $[C_3H_6NO_3]^+$ (m/e 104) are formed from the unsubstituted glycoside 1. The structure shown was deduced on the basis of the observed elemental composition and, after deuteration, the observed shift by four units to higher m/e values.

Exact-mass measurements showed that the peak at m/e 75 in the spectra of 1 and 2-4 is a doublet. Whereas the $[C_3H_7O_2]^+$ particles constitute J_1 ions, the formation of the ions $[C_2H_5NO_2]^+$ has no analogy in any carbohydrate derivatives studied thus far. The m/e value at which J_1 ions appear remains unchanged on attempted deuteration, whereas peaks attributed to the ions $[C_2H_5NO_2]^+$ are shifted to m/e 79. The relative contributions of the two types of ion are shown in Table III. The formation of the $[C_2H_5NO_2]^+$ ions may be rationalized by a double rearrangement of hydrogen atoms of the hydroxyl groups present in the molecule. The hydrogen atom subsequently migrates to the carbonyl and ring-oxygen atoms. Consequently, the bond is cleaved to give, finally, the conjugated $[C_2H_5NO_2]^+$ ions

TABLE III THE RELATIVE CONTRIBUTIONS OF THE $[C_2H_5NO_2]^{\ddagger}$ and $[C_3H_7O_2]^{\ddagger}$ ions to the intensity of the peak at m/e 75

Compound	Percent						
	$C_2H_5NO_2$	$C_3H_7O_2$					
1	71	29					
2	89	11					
3	38	62					
4	43	57					

as shown in Scheme 3 for their formation from the 2-O-methyl derivative 2. The fact that the peak at m/e 75 comprises two ion-species also explains the high intensity of these peaks in the spectra of the derivatives 1, 2, and 4, not containing a methoxyl group at C-3.

The mass spectra of 1-8 (Table I) show characteristic differences (Table II) that may be used for unambiguous determination of both number and positions of methyl groups in methyl O-methylhexopyranosiduronamides.

EXPERIMENTAL

Compounds 1-8 were prepared ¹⁰ by ammonolysis of the corresponding methyl (methyl O-methyl- α -D-glucopyranosid) uronates. For deuteration, the compounds were dissolved in 10:1 CH₃OD-D₂O, and the solvents were removed directly in the mass spectrometer. The degree of deuteration achieved was 53-85%. Mass spectra were obtained at 70 and 12 eV and an emission of 100 μ A by using a JMS 100 D instrument. The temperature at the site of evaporation (200-245°) was measured

with an MS-DPT-01 direct-probe, temperature-control unit, and that in the ionizing chamber was 180°. Exact-mass measurements were performed at a resolution of 10,000. Metastable transitions were measured with an MS-MT-01 metastable-ion detector.

ACKNOWLEDGMENT

The authors are grateful to Mr. J. Mrva for skilful technical assistance.

REFERENCES

- 1 V. MIHÁLOV, V. KOVÁČIK, AND P. KOVÁČ, Chem. Zvesti, in press.
- 2 V. Kováčik and P. Kováč, Org. Mass Spectrom., 9 (1974) 172-180.
- 3 N. K. Kochetkov, N. S. Wulfson, O. S. Chizhov, and B. M. Zolotarev, *Tetrahedron*, 19 (1963) 2209–2224.
- 4 N. K. KOCHETKOV AND O. S. CHIZHOV, Tetrahedron, 21 (1965) 2029-2047.
- 5 K. HEYNS AND D. MÜLLER, Tetrahedron, 21 (1965) 55-68.
- 6 K. HEYNS AND H. SCHARMANN, Tetrahedron, 21 (1965) 507-513.
- 7 V. Kováčik and P. Kováč, Org. Mass Spectrom., 10 (1975) 376-383.
- 8 V. Kováčik, V. Mihálov, and P. Kováč, Chem. Zvesti, 32 (1978) 258-266.
- 9 V. Kováčik and P. Kováč, Carbohydr. Res., 38 (1974) 25-34.
- 10 P. Kováč, Carbohydr. Res., 31 (1973) 323-330.
- 11 K. HEYNS, K. R. SPERLING, AND H. F. GRÜTZMACHER, Carbohydr. Res., 9 (1969) 79-97.